Handwritten Digit Recognition Using Multiple Feature Extraction Techniques and Classifier Ensemble

نویسندگان

  • Rafael M. O. Cruz
  • George D. C. Cavalcanti
چکیده

It is herein proposed a handwritten digit recognition system which uses multiple feature extraction methods and classifier ensemble. The combination of the feature extraction methods is motivated by the observation that different feature extraction algorithms have a better discriminative power for some types of digits. Six features sets were extracted, two proposed by the authors and four published in previous works. It is shown that combining these feature sets is sufficient to achieve high recognition rates. Several combination schemes were tested, showing good results. A scheme using neural networks as a combiner achieved a recognition rate of 99.68%, the highest one on the MNIST database. Keywords-Handwritten recognition, Feature Extraction, Classifier Ensemble, Neural Networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

Application of Support Vector Machines for Recognition of Handwritten Arabic/Persian Digits

A new method for recognition of isolated handwritten Arabic/Persian digits is presented. This method is based on Support Vector Machines (SVMs), and a new approach of feature extraction. Each digit is considered from four different views, and from each view 16 features are extracted and combined to obtain 64 features. Using these features, multiple SVM classifiers are trained to separate differ...

متن کامل

Handwritten Digit Recognition Using Neural Network Approaches and Feature Extraction Techniques: a Survey

In computer vision the most difficult task is to recognize the handwritten digit. Since the last decade the handwritten digit recognition is gaining more and more fame because of its potential range of applications like bank cheque analysis, recognizing postal addresses on postal cards, etc. Handwritten digit recognition plays a very vital role in day to day life, like in a form of recording of...

متن کامل

A class-modular GLVQ ensemble with outlier learning for handwritten digit recognition

A class-modular generalized learning vector quantization (GLVQ) ensemble method with outlier learning for handwritten digit recognition is proposed. A GLVQ classifier is one of discriminative methods. Though discriminative classifiers have remarkable ability to solve character recognition problems, they are poor at outlier resistance. To overcome this problem, a GLVQ classifier trained with bot...

متن کامل

MCS HOG Features and SVM Based Handwritten Digit Recognition System

Digit Recognition is an essential element of the process of scanning and converting documents into electronic format. In this work, a new Multiple-Cell Size (MCS) approach is being proposed for utilizing Histogram of Oriented Gradient (HOG) features and a Support Vector Machine (SVM) based classifier for efficient classification of Handwritten Digits. The HOG based technique is sensitive to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010